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Inputs Magic Output



AI & Algorithms

Input Magic Output

• Linear Models

• Decision Trees

• Bayesian Models

• Neural Nets

• Paul the Psychic 

Octopus



• “The government are very keen 

on amassing statistics. They 

collect them, add them, raise 

them to the nth power, take the 

cube root and prepare 

wonderful diagrams. But… [it all 

comes down to].. the village 

watchman, who just puts down 

what he damn pleases.” – 

Josiah Stamp (first director of 

the Bank of England)



Agenda

• What is AI – defining our terms

• AI building blocks

• AI and gambling

• Problems and potential



WHAT IS AI?



Artificial Intelligence

Machine Learning

Supervised 

Machine 

Learning

Statistical 

Algorithms



Artificial Intelligence

“…is a field of research in computer 

science that develops and studies 

methods and software that enable 

machines to perceive their environment 

and uses learning and intelligence to 

take actions that                                 

maximize their chances                                       

of achieving defined                            

goals.” - Wikipedia

Artificial Intelligence

Machine Learning

Supervised 
Machine 
Learning

Statistical 
Algorithms



Types of Artificial Intelligence

Techniques

• Machine Learning

• Deep Learning

• Natural Language 

Processing

• Computer Vision

Purpose

• Generative

• Predictive



Machine Learning

“Machine learning is a field of study in 

artificial intelligence concerned with the 

development and study of statistical 

algorithms that can learn from data and 

generalize to unseen data, and thus 

perform tasks without                          

explicit instructions.”

-Wikipedia

Artificial Intelligence

Machine Learning

Supervised 
Machine 
Learning

Statistical 
Algorithms



Supervised vs. Unsupervised Machine 

Learning

• Unsupervised ML is just trying to 

group cases according to patterns – 

no real y variable or prediction

• Supervised ML has information about 

what the actual                                  

outcomes are and is                                   

trying to fit a model                          

to those. 

Artificial Intelligence

Machine Learning

Supervised 
Machine 
Learning

Statistical 
Algorithms



Algorithm

“…an algorithm is a finite sequence of 

mathematically rigorous instructions, 

typically used to solve a class of specific 

problems or to perform a 

computation.”                                                 

- Wikipedia
Artificial Intelligence

Machine Learning

Supervised 
Machine 
Learning

Statistical 
Algorithms



AI BUILDING BLOCKS



Input Output



Inputs

• Training data

• Could be a set of predictors we think are 

related to the outcome

• Could be a huge dataset with all possible 

predictors

• Training data specifies correct outputs – 

the algorithm learns                                            

from the training                                                

data and then                                                

applies its model to                                           

new data.

(Lee et al., 2024)



Input Output



• Classification

• Metrics
• Classification accuracy

• Area under the curve on an ROC curve

• Sensitivity

• Specificity

Outputs



THE BLACK BOX

?



Types of Algorithms
Type Strengths Weaknesses

Logistic regression • Minimal computational 
cost

• Easy statistical 
interpretation

• Assumption of predictor 
independence

Bayesian networks • Accounts for correlation 
among predictor 
variables

• Can mitigate overfitting

• Computationally 
intensive

• Weights all input 
variables equally

Support vector classification

Random forest • Typically produces high 
performing models with 
high levels of accuracy

• Computationally 
intensive

• Can be at particular risk 
of overfitting

Neural networks • Can be applied to data 
where relationship 
between variables is only 
vaguely understood

• Works well with high 
dimensionality

• Processes are opaque; 
model is complex; can 
behave unpredictably



CALIBRATION



Calibration

1. Training data with actual outcomes

2. Model is fit to the training data

3. Model is tested on a new data set 

with actual outcomes

4. Model is released into the wild



GAMBLING AND AI



Ways AI Is Used in Gambling

• Responsible gambling

• Personalized user experience and messaging

• Engagement

• Setting odds

• Fraud detection

• Sports betting advice

• Helping players

• Chatbots for treatment

• ???















RESPONSIBLE GAMBLING 

ALGORITHMS



RG Algorithm Goals

• Save time and resources and improve quality of 
life by intervening before clinical symptoms of 
disordered gambling appear. 

• Need to identify the precursors (e.g., markers) 
to clinically manifest disordered gambling 

• Use actual gambling behavior to identify, with 
good reliability and validity, individuals who 
develop gambling problems

• Utilize this/these algorithm(s) to set up an early 
warning system for players at risk of 
developing problems



• Linear Models

• Decision Trees

• Bayesian Models

• Neural Nets

• Paul the Psychic 

Octopus

Gambling activity

Financial activity

Demographics

Responsible Gambling Algorithms

Input Black Box Output

Risk for gambling 

problems



Inputs

• Risk factors identified by past work

Substance use



Inputs

# of bets

Variability



Outputs

• Risk for gambling problems

• Don’t always have access to gambling 

assessment outcomes

• Proxies help us group subscribers into 

problem gambling and non-problem 

gambling groups



WHIRLWIND TOUR OF RG 

ALGORITHMS



A Whirlwind Tour of (Academic) RG 

Algorithms

Predictors Models Outcomes

# of deposits
$ of deposits
Bet $ variability
Chasing
Largest single day $ wagered
Most bets in one day
Weekly bet $
Variation in weekly bet $
Bets per week/day
Age
# of gambling days
Average daily loss
Average loss per session
Account depletion
# of play breaks
Multi-tabling in poker

Placing deposits shortly after placing bets
Multiple deposits in a short period of time
Average # of deposits per session
Slope of # of deposits
# of active days
Slope of # of sessions 
#of denied deposits
Volume of cash
Proportion of sessions on desktop
SD of session durations
UK account
Session duration
# of wagers
# of sessions
$ wagered
Distinct games per session
Weekly bets on basketball (French)

Random forest
Neural networks
Logistic regression
Support vector

PGSI
Self Exclusion
BBGS

(Perrot et al., 2022; Murch et al., 2023; Auer & Griffiths, 2023, Ukhov et al., 2021, 

Finkenwirth et al., 2021, Kairouz et al., 2023, Luqiens et al., 2016)



Natural Language Processing and RG              
(Smith et al., 2024)

• Trained a large language model using data scraped from 

an online casino gambling platform discussion board to 

detect signs of problem gambling

• Precision was better than prior models of this type.

• A few minor errors:

• Mixed up complaints with having 

a gambling problem

• Missed gambling problems if not 

enough text surrounding phrases like                                           

“addiction” and “gambling problem”



2007 2021201920172015201320112009

Saskatchewan Gaming Corporation 
develops program to identify high-
risk players.

Kindred Group introduces its in-
house Player Safety - Early 
Detection System (PS-EDS).

888 Holdings develops in-
house player monitoring 
technology called Observer.

FuSheng Interactive agrees to 
use PlayScan, Svenska Spel’s set 
of tools that allow operators and 
players to monitor gambling.

SkyCity Entertainment begins 
using Focal Research 
Consultants’ system for 
identifying gamblers at risk.

Green Gaming builds
in-house algorithm to 
identify gamblers at risk.

Svenska Spel offers PlayScan, where 
players see warning lights when 
their play patterns are indicative of 
risk.

Focal Research tests their ALeRT BETTOR 
Protection System in the UK. Entain introduces the 

“Advanced Responsibility 
& Care” system for safer 
gambling.

Various companies use 
Neccton's Mentor system 
to classify players as at 
risk based on their betting 
histories.

GVC partners with Future 
Anthem to upgrade their 
existing identification 
algorithm to allow for 
earlier identification.

Kindred Group calculates and releases the 
“percentage of Gross winnings revenue 
derived from harmful gambling.”

2005

bwin partners with the Division on 
Addiction to use player records to 
identify behaviors and patterns 
and inform software to identify 
early risk factors for problems.

bwin.party implements a DOA-
designed algorithm for detecting 
sports bettors at risk of 
developing problems.

(credit: Dr. Matthew Tom and other staff at the Division)

A Whirlwind Tour of (Industry) RG Algorithms



Entain LLC ARC Player Protection System

https://www.entaingroup.com/news-insights/insights/2021/protecting-players-with-arc/ 

https://www.entaingroup.com/news-insights/insights/2021/protecting-players-with-arc/


https://mindway.ai/ 

https://mindway.ai/


https://mindway.ai/ 

https://mindway.ai/


AI IN GAMBLING TREATMENT



The Role of AI in Addiction (Suva & Bhatia, 2024)

• Potential Roles
• Identification

• Management

• Relapse prevention

• Prognostication

• Problems
• Data out only as good as 

data in

• Privacy

• Algorithmic bias



Chat GPT Example



GAMBOT (So et al., 2020)

Assessment Only (n = 101) GAMBOT (n = 96)

Study Participants 

(N=197)

Change in PGSI: -3.24                

(-4.35,-2.13)

Change in PGSI: -4.38                

(-5.56,-3.20)

28 

weeks



GAMBOT2 (So et al., 2024)

Unguided GAMBOT2         

(n = 67)

Guided GAMBOT2 

(n = 72)

Study Participants 

(N=139)

Change in PGSI: -4.3                

(SD: 6.9)

Change in PGSI: -3.9                

(SD: 4.7)

12 

weeks



AI PROBLEMS

49



Gambling activity

Financial activity

Demographics

Problems

• Interpretation

Responsible Gambling Algorithms

Input Magic Output

Risk for gambling 

problems

• What are we 

measuring?

• Coded bias

• What are we trying 

to predict?

• Accuracy

• Linear Models

• Decision Trees

• Bayesian Models

• Neural Nets

• Paul the Psychic 

Octopus



PROBLEMS – WHAT ARE WE 

MEASURING?

51



What Are We Measuring?

• A model is only as comprehensive as its inputs

• Meta-analysis of most common risk factors for 

gambling problems -  (Allami et al., 2021)

• Rated 57 potential risk factors

• Best predictors were all gambling activity related

• MANY of the predictive algorithms based on 

player records generate risk levels based entirely 

on involvement metrics

?



PROBLEMS – CODED BIAS

53



Case Study: COMPAS

• COMPAS assessment was/is used within the justice 

system to guide supervision and case planning

• Provides a risk score that was being used to 

determine risk for recidivism among other things

• Was otherwise a                                                                 

black box

(Corbett-Davies et al., 2017; 

Angwin et al., 2016)



Case Study: COMPAS

• ProPublica published a report in 2016

• Black people had higher risk scores than White 

people; AND

• Black people with the same                                       

criminal background and                                                

other factors were getting                                                      

much higher risk scores                                                     

than White people with                                                  

similar backgrounds.

(Corbett-Davies et al., 2017; Angwin et al., 2016)



Case Study: COMPAS

• Was the algorithm using race as a predictor?

• No

• Certain factors correlate with race (e.g., zip code, 

poverty)

• In fact, COMPAS was equally accurate for White 

people and Black people – it had a classification 

accuracy of 61% for each group. 

• BUT…

(Angwin et al., 2016; Christian, 2020)



Case Study: COMPAS

• …when it was wrong, how it was wrong differed

• Black people were 2x more likely to be 

rated higher risk but NOT re-offend, 

whereas White people were 2x more likely 

to be rated low risk but go on to re-offend

(Angwin et al., 2016; Christian, 2020)



Training Data Matters

• An algorithm is at the mercy of its training data

• Training data specifies “correct” outputs – 

algorithm learns from the training data and then 

applies its model to new data

• Might not be fully representative (e.g., 

Faces in the Wild dataset)

• Might have biases “baked in” (e.g., 

recidivism algorithms)

• Can replicate or amplify                                 

human biases                                                     

(e.g., Microsoft’s chatbot)

(Lee et al., 2024; Friis & Riley, 2023; Okidegbe, 2007; 

Christian, 2020)



Coded Bias Applied to Gambling

• Gambling risk algorithms could very well have 

coded bias

• Example: Affordability indices

• Zip code, geographical markers, poverty

• Career, salary, etc.

• No current efforts to detect potential bias



PROBLEMS – WHAT ARE WE 

TRYING TO PREDICT?

60



Example

• Ideal target: patients who are likely to get sick

• Actual target: patients who seek treatment and 

generate health care costs

(Bembeneck et al., 2021)



Applied to Gambling

• Examine our proxies
• Are they really equivalent to gambling problems?

• How do they differ?

• Context
• Who was the sample used to develop the 

algorithm?

• Are they equivalent to the individuals for whom 

the algorithm is deployed?



PROBLEMS – ACCURACY

63



RG Algorithm Accuracy

• Most RG predictive algorithms that have been 

tested aren’t particularly accurate

• This is not unique to gambling – problem with most 

low base rate occurrences

• Problem with overfitting (Ghaharian et al., 2023; 

Philander, 2014)

• Might be accurate at one level but not another

• Differentiate high risk from others, but unable to 

differentiate moderate risk from low risk (Murch et al., 

2023)



What does it mean to be accurate?

• 98% accurate could be really inaccurate if the base 

rate is low

• Need to look carefully at sensitivity and specificity

Actual GD Actual not-GD

Predicted GD 0 0

Predicted not-GD 10 490

Classification accuracy: 490/500 = 98%

Sensitivity: 0/10 = 0%

Specificity = 490/490 = 100%



PROBLEMS -

INTERPRETATION



Interpretability

• Most accurate models tend to be the most 

opaque (and vice versa), and that can be 

dangerous

• If not fully understood, algorithms can create 

feedback loops

(Ghaharian et al., 2023; Christian, 2020)



Context

• Make sure an algorithm is being used 

for the purpose it is supposed to be 

used for and that its context is 

understood
• e.g., finding that betting on basketball is a 

particularly salient risk factor (Kairouz et al. 

2023)…

• …in France



SOLUTIONS

69



Problems

Messaging & Feedback

Solutions

What are we measuring?

Coded bias

What are we predicting?

Accuracy

Interpretation

Move beyond involvement

Testing

Merge records & self-report

Tiered systems

Treat as probabilistic



• No current method for avoiding discrimination 

against protected attributes in machine learning

• Doesn’t work to just ignore the actual attributes 

since other features are correlated with them.

• Doesn’t work to just ensure that the decision is 

independent of the protected attribute

• Can require equalized odds within groups but 

might change meaning of risk scores

• Hardt et al., 2016 proposed a test to test for the 

level of discrimination in an algorithm

(Hardt et al., 2016; Bembeneck et al., 2021)



Problems

Messaging & Feedback

Solutions

What are we measuring?

Coded bias

What are we predicting?

Accuracy

Interpretation

Move beyond involvement

Testing

Merge records & self-report

Tiered systems

Treat as probabilistic





Problems

Messaging & Feedback

Solutions

What are we measuring?

Coded bias

What are we predicting?

Accuracy

Interpretation

Move beyond involvement

Testing

Merge records & self-report

Tiered systems

Treat as probabilistic



• Choose models that allow us to see under the 

hood (Christian, 2020)

• Consider the population and context

• Some models being developed separately for 

different game types (e.g., Ukhov et al., 2021)



MESSAGING AND FEEDBACK

76



• MUST evaluate our messaging and interventions 

based off of algorithms, as well

• Might need to be tailored to different 

populations

• Might have different effects than                              

we expect



Principles & Guidelines for Ethical AI 
(Jobin et al., 2019)

0 20 40 60 80 100

Transparency

Justice & Fairness

Non-malificence

Responsibility

Privacy

Beneficence

Freedom & Autonomy

Trust

Sustainability

Dignity

Solidarity

%



TAKE-HOME POINTS

79



1. When people are referencing Artificial 

Intelligence, make sure they explain what 

they mean. Could be nothing more than a 

logistic regression model (or not even that).  

2. Training data matters. We’re most tuned into 

this for coded bias, but it matters for 

interpretation, for claims of accuracy, for 

everything.

3. No matter how good the training                       

data and the accuracy, algorithms                         

are probabilistic models.



1. AI has potential for prevention and 

intervention.

2. For every AI model built to help prevent and 

detect gambling problems, there is one to 

help engage gamblers and increase revenue.

3. Prevention of gambling harms can benefit 

from raising awareness of AI among 

gamblers (e.g., powerful AI models                   

being used to set the odds for                         

sports gambling).
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Additional Resources

• Questions?  snelson@hms.harvard.edu 

• www.divisiononaddiction.org  

– Division on Addiction’s main website

– Current projects and publications

• www.basisonline.org 

– Brief science reviews and editorials on current issues in 

the field of addictions

– Addiction resources available, including self-help tools

• https://www.facebook.com/divisiononaddiction 

– The Division’s facebook page

mailto:snelson@hms.harvard.edu
http://www.divisiononaddiction.org/
http://www.basisonline.org/
https://www.facebook.com/divisiononaddiction
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